研究生学位毕业论文开题报告 篇一
标题:基于深度学习的图像语义分割算法研究与应用
摘要:
图像语义分割是计算机视觉中的重要研究方向,通过将图像中的每个像素分配到不同的语义类别中,可以实现对图像内容的精确理解和分析。随着深度学习技术的不断发展,基于深度学习的图像语义分割算法在准确性和效率方面取得了显著的进展,成为当前研究的热点。
本研究旨在探究基于深度学习的图像语义分割算法,并应用于实际场景中。首先,将对图像语义分割的基本概念和现有的算法进行综述和分析,包括传统的基于图割、条件随机场等方法以及近年来兴起的基于深度学习的方法。通过调研和比较,确定一种适合实际应用的基于深度学习的图像语义分割算法作为研究对象。
其次,针对所选算法的局限性和不足,提出相应的改进和优化方法。在研究过程中,将使用大量的真实图像数据集进行实验验证,评估算法的准确性和鲁棒性。通过与已有算法进行对比实验,验证所提出方法的有效性和优越性。
最后,将应用所研究的基于深度学习的图像语义分割算法到某一具体场景中,例如自动驾驶、医学影像分析等领域。通过实际应用的结果和反馈,对算法的性能和可靠性进行评估,并提出进一步改进的建议。
通过本研究的开展,旨在提高图像语义分割算法的准确性和效率,推动深度学习技术在计算机视觉领域的应用,为相关领域的研究和应用提供参考和支持。
关键词:深度学习、图像语义分割、算法研究、实际应用、准确性、效率
(总字数:602字)
研究生学位毕业论文开题报告 篇二
标题:基于区块链的数字货币交易安全性研究
摘要:
随着数字货币的兴起和快速发展,数字货币交易安全性问题日益凸显。传统的中心化交易系统存在着安全风险,例如被黑客攻击、交易数据篡改等。而区块链技术作为一种分布式、去中心化的记账技术,被广泛应用于数字货币领域,具有较高的安全性和可靠性。
本研究旨在深入研究基于区块链的数字货币交易安全性,并提出相应的解决方案。首先,将对区块链技术的基本原理和数字货币交易的相关概念进行介绍和分析,包括区块链的去中心化、不可篡改等特点,以及数字货币交易的流程和安全性需求。
其次,将重点研究区块链技术在数字货币交易中的应用,并分析其安全性能。通过对已有区块链平台的调研和对比,选取一种适合数字货币交易的区块链系统作为研究对象。通过对其安全机制的研究和改进,提高数字货币交易的安全性和可靠性。
最后,将针对所选区块链系统进行实验验证和性能评估。通过构建合适的实验环境和数据集,模拟实际的数字货币交易场景,并进行安全性和效率方面的实验比较。通过实验结果的分析和总结,对所研究的区块链系统的优化和改进提出建议。
通过本研究的开展,旨在提高数字货币交易的安全性和可靠性,推动区块链技术在金融领域的应用,为数字货币交易的发展提供支持和保障。
关键词:区块链、数字货币交易、安全性、解决方案、性能评估
(总字数:605字)
研究生学位毕业论文开题报告 篇三
研究生学位毕业论文开题报告
开题报告是训练研究生科研能力与学术作品撰写能力的有效的实践活动,下面是小编搜集整理的研究生学位毕业论文开题报告,供大家阅读参考。
一、选题的背景及研究的目的和意义
1.1选题背景
我国是一个能源生产和消费大国,经济的快速发展导致能源需求的快速增长[1]。据国家统计局2014年2月22日发布的《中华人民共和国2013年国民经济和社会发展统计公报》,我国2013年全年能源消费总量37.5亿吨标准煤,比上年增长3.7%。煤炭消费量增长3.7%;原油消费量增长3.4%;天然气消费量增长13.0%;电力消费量增长7.5%。这表明,我国己成为世界上煤炭一次性能源等消耗最大的国家,是世界上能源消耗的第二大国。因此,合理利用能源,节约能源,降低排放己经成为我国可持续发展的战略方针之一[2]。
目前,火电厂综合效率低下的原因之一就是将机组中做完功的乏汽排入凝结器后,其热量被循环水带走,然后通过冷却塔排入大气或随循环水排入江河,低温余热被大量浪费,造成非常大的冷源损失[3],随低温水排放掉的乏热约占总损失的55 %一60 %[4]。我国能源利用率仅为33%,节能空间和潜力很大[5]。能源利用效率的低下,意味着我国经济和社会的快速发展必然以消耗大量的一次性能源作为代价,使得我国本就十分严峻的石化能源形势更加雪上加霜,也不符合可持续发展战略的要求,并且大量的能源消耗以及较低的能源利用效率,必将造成巨大的热排放与热污染,粉尘、硫氧化物和氮氧化物的排放会造成空气污染加剧,二氧化碳的排放会造成温室效应等。根据我国“十二五”发展规划,燃煤火电机组新开工容量估计为3亿kW ,2015年发电总装机容量将达到14. 36亿kW,其中火电装机容量将到达9. 33亿kW。在这些机组中,除了北方部分非常缺水的地区使用空冷,多数机组都是采用循环水冷却排汽。在燃煤火电机组装机容量增添的进程中,碳排放总量也会随之增添,二氧化硫等污染物的排放量也将有较大幅度的增添,如果能对循环水中热量加以利用,提高能源综合利用效率,必定会节省石化能源的使用量,做到环境、经济、能源等多赢的局面[6]。
由于正常情况下循环水的温度比较低(一般冬季20-35℃),达不到直接供热的要求,要用其供热,必须想办法适当提高其温度。中小型凝汽式汽轮机可以通过降低排汽缸真空从而提高循环水温度(60-80℃)的方法进行供热,即低真空运行循环水供热,该技术在理论上可以实现很高的能源利用效率,国内外都有很多研究和成功运行的实例,技术已很成熟,特别在我国一些北方城市得到了广泛的应用与推广。但传统的低真空运行机组类似于热电厂中的背压机组,其通过的蒸汽量决定于用户热负荷的大小,所以发电功率受用户热负荷的制约,不能分别地独立进行调节,即其运行也是‘以热定电’,因而只适用于用户热负荷比较稳定的供热系统。另外,机组低真空运行须对机组结构进行相应的改造,仅适应于小型机组和少数中型机组,对现代大型机组则是完全不允许的。在具有中间再热式汽轮机组的大型热电联产系统中,凝汽压力过高会使机组的末级出口蒸汽温度过高,且蒸汽的容积流量过小,从而引起机组的强烈振动,危及运行安全。大型汽轮机组的循环冷却水进口温度一般要求不超过33℃(相应的出口温度在40℃左右),如果供热温度在此范围之内,则机组结构不需作任何改动,且适应于任何容量和类型的机组。但目前适应于该温度范围的供热装置只有地板低温辐射采暖,因此其应用范围受到比较大的限制[7]。
提高电厂循环水温度用于供热的另一个方法是采用热泵技术,即以电厂循环冷却水
为低位热源、利用热泵技术提取其热量后向用户供热。电厂循环水与目前常用的热泵热源相比,具有热量巨大、温度适中而稳定、水质好、安全环保等优点,是一种优质的热泵热源。以电厂循环水作为热泵低位热源进行供热,可以方便灵活的实现供热量与用户需求之间的质”与量”的匹配,也不会对发电厂原热力系统产生较大影响[8]。利用热泵装置回收循环冷却水余热返回热力系统中用于加热凝结水,可以减少相应低压加热器的抽汽消耗量,从而增加电厂的发电量,降低电厂的发电煤耗值,提高电厂运行的经济性。因此电厂循环水水源热泵是回收利用电厂循环水余热进行供热的一种较理想方式。
1.2 研究目的和意义
为了利用电厂中产生的大量温度高于环境温度10度左右的低温循环冷却水,从提高系统热力学完善性出发,选用第一类吸收式热泵,分析其循环机理,在此基础上以300MW机组为例,进行热力计算,分析其经济性。
通过采用热泵技术,部分的利用冷却系统的工艺循环冷却水,提取冷却水的余热,降低冷却水的温度,实现对余热的回收利用,将余热能源转换为可有效利用的能源,节约工艺中蒸汽能源的消耗,在实现节能减排,保护环境的`同时,为企业创造直接的经济效益[9]。
二、本选题研究领域国内外的研究动态及发展趋势
2.1国外研究动态及发展趋势
欧美、日木在余热回收方面的研究己经有很长的历史,自1973年的能源危以来各国对能源问题都给予了高度重视。
1976 年,美国B.C.L.(Battele Columber Labs)就提出概念并进行市场预测,确信利用吸收式热泵回收余热技术技术有实用价值[10]。美国费城郊区,面积为407亩的Crozer-Chester医疗中心有25栋大楼,安装了一套能源转换系统。此系统的一部分利用一台工业热泵将来自该医疗中心的空调机房的废热转移到洗衣房用的热水中,单独此一设施在十年内将节省超过50万美元[11]。美国宾夕法尼亚州Bell电话公司的一座电话转换中心利用热泵吸取来自270冷吨的空调系统的冷却装置所聚集的废热,在10年的分析周期内将每年节省27000万美元[12]。日本三洋公司1981年以来就已经为日本和世界各地建立了20多套2000- 5OOOkW规模的AHT装置,大多用于回收石化企业蒸馏塔顶有机蒸汽的热量[13]。至今为止,先期建立的装置己经成功运转十多年。他们利用溟化铿/水单级热泵回收工业废热,将锅炉给水由93℃升高到117℃,且己经成功应用于工业领域,其应用装置总数占世界一半以上[14]。
近年来,热泵的发展取得长足的进步。Vander Pal[15]等人研发了一种压缩/吸收混合式热泵机组,将低于100℃的工业废热进行提升,对混合式热泵建立模拟计算模型并进行实测验证,结果显示当压缩机位于蒸发器和吸附反应器之间时,其对机组能效的影响显著大于压缩机位于吸附反应器和冷凝器之间时,后者与纯粹热驱动机组相比能效几乎相同,充分证明了研究系统内各部件之间相互影响的重要性。Miyazaki[16]等人提出了一种双蒸发器吸收式制冷机,这一新型制冷机由2个蒸发器、1个冷凝器和3个吸收器组成,蒸发和吸收同时在2个不同的压力下进行,可以扩大浓缩和稀释过程中吸附质的浓度变化范围。实验结果表明在给定条件下双蒸发器吸收式机组的性能系数是普通机组的3.4倍。Christian Keil[17] 等研究了吸收式热泵在低温集中供热系统中的应用。
2.2国内研究动态及发展趋势
我国的余热回收发展较国外要晚一些,回收利用的余热主要是烟气的显热和生产过程中排放的可燃气,低温余热利用还处于起步阶段。而且我国在余热(特别是低品位的余热)回收方面,还主要是采用压缩式热泵的方式。在吸收式热泵应用方面还很落后。近几年来,有不少人对利用吸收式热泵技术回收余热进行了大量的研究。
大连三洋制冷有限公司的肖永勤[18]提出利用溴化锂吸收式热泵回收地热尾水余废热为油田作业区提供采暖水方案,用一台溴化锂吸收式热泵机组取代原3台蒸汽锅炉,投入使用2个采暖季后,节约燃气费用121万元,节能率达原系统能耗的46%。
东北电力大学的周振起[19]对用热泵装置回收循环冷却水余热再加热锅炉进风进行研究,可以减少辅助蒸汽用量,也可减少抽汽消耗量,从而提高电厂的热经济性。
华电电力科学研究院的周崇波[20]等人对已经投产的125MW等级火电厂以及300MW等级火电厂采用大型吸收式热泵回收循环水余热用于城市集中供热的余热回收利用系统进行性能测试,得出热网水回水温度升高,驱动蒸汽压力减少等造成的劣行影响大于相应参数反方向变化带来的良性影响,且驱动蒸汽对制热量及回收余热量的影响要大于热网水与余热水的影响。
河北省电力研究院的郭江龙[21]利用电能的换热系数来讨论压缩式热泵和吸收式热泵两种系统的经济性,对于指导热泵选型具有重要意义。
吕太、刘玲玲[22]根据大唐第三热电厂的实际情况,对将工业抽汽、工业抽汽与采暖抽汽、采暖抽汽作为驱动热源这三种情况进行分析,进行热经济性计算。
吴星[23]等人研究发现循环水供热由于供回水温差较小(10-15℃),同样供热负荷下较城市热网需要更大的管网投资和水泵电耗。因此,循环水供热的适用范围为电厂周边半径3-5km。
西安交通大学的孙志新[24]建立了电厂循环水水源热泵的数学模型,分析了凝汽器温度对热泵蒸发温度和制热系数等主要参数的影响,并计算得到热泵供热优于抽汽供热的临界参数。
华电电力科学研究院的王宝玉[25]根据热泵系统的冷凝器取代低压加热器的循环方式,以3台额定负荷分别为200MW,300MW,600MW机组为例,进行节能分析,该方式能够简化电厂加热系统,是系统优化和节能的重要途径。
清华大学基于吸收式热泵回收循环水余热的供热技术先后在内蒙古赤峰及山西大同等电厂实施,大大提高了其供热能力[26]。北京、山西等地的多家电厂采用吸收式热泵机组吸取循环水余热用于供热的实践工程已经取得了良好的企业效益和社会效益,在节能与环保方面率先垂范,如大同某电厂的余热利用项目年节水效益331.2万元,年节约标煤6.8万吨,年二氧化碳减排17万吨[27]。
中油辽河公司的金树梅[28]结合工程实例,比较了锅炉供暖与吸收式热泵供热系统的经济性,得出热泵系统的经济性更优于前者。
叶学民[29]以超临界660WM机组为例,利用等效焓降法计算分析吸收式热泵的经济性。
西山煤电集团刘振宇[30]根据燃煤电厂热电联厂集中供热中存在利用率低的现状,分别讨论了几种不同的乏汽余热回收供热的技术路线。
三、本选题拟主要研究的内容及采取的研究方案、技术路线
3.1研究的主要内容
(1)根据吸收式热泵的理论循环过程,找出循环过程中各典型状态点,通过查阅资料,分析热泵实际循环中的影响因素;
(2)以热泵系统各换热器为关键部件,建立吸收式热泵回收循环水余热的分析与计算模型;
(3)以300MW供热机组为例,对机组的系统能效进行计算与分析;
3.2研究方案
吸收式热泵可以分为输出热的温度低于驱动热源的第一类吸收式热泵(增热型)和输出热的温度高于驱动热源的第二类吸收式热泵(升温型),在热电厂循环水余热利用时,适合采用第一类吸收式热泵。本选题以溴化锂吸收式热泵为对象,通过了解工质的性质,分析吸收式热泵系统的循环过程,假设整个系统处于热平衡和稳定流动流动状态,蒸发器和冷凝器出口工质为饱和状态,吸收器发生器出口的溴化锂溶液为饱和溶液,不计换热器换热损失,节流阀内为绝热节流过程,不计热网水物性参数变化,对系统建立数学模型,求出各换热器的换热量以及系统的热力系数,并且在机组供热量情况下,分别从机组供热能力充足和供热能力不足两方面讨论热泵系统的经济性。
3.3技术路线
(1)根据溴化锂溶液的焓-浓度图或溴化锂水溶液的比焓值计算方程,确定热泵系统各典型状态点的焓值;
(2)以热泵系统各换热器为关键部件,建立吸收式热泵回收循环水余热的模型,根据热平衡列出各换热器的热负荷方程,由各状态点的焓值,求得各具体换热部件的换热负荷,再由整个系统的热平衡方程式求出系统的热力系数;
(3)在供热负荷和蒸汽初终参数不变的情况下,求出供暖抽汽量和热泵驱动热源抽汽量,在供热不足的情况下直接以热泵回收的循环水余热量讨论经济性,在机组供热充足的情况下,计算出安装热泵系统所节省的抽汽量,求出机组增加的功率,算出节省煤量,得出其节能收益;
四、本选题在研究过程中可能遇到的困难和问题,提出解决的初步设想
可能遇到的困难和问题:热泵的实际运行过程中会受到很多因素的影响,使得模型的建立与计算十分困难。分析节能效益时,单纯的从热量角度出发,得到的结果可能与实际收益相差太大,能否找到一种相对准确的评判其经济性的方法。
解决的初步设想:首先要熟悉并了解溴化锂溶液的性质及溴化锂吸收式热泵的工作原理,在对热泵系统进行建模时,忽略一些影响因素,做出一些理想假设。对于其节能效益的分析时,从供热能力或供热需求方面进行探讨。在遇到具体问题要仔细查阅相关资料,向学长和老师请教。
五、本选题研究的进度安排及预期达到的目标
5.1研究的进度安排
(1)20XX.09-20XX.10 了解课题,查阅资料,撰写开题报告;
(2)20XX.11-20XX.01 完成开题报告,开始着手对热泵系统建立模型;
(3)20XX.03-20XX.05 对模型进行计算并进行经济性分析,完成小论文;
(4)20XX.06-20XX.07 中期答辩;
(5)20XX.09-20XX.03 撰写毕业论文,准备毕业答辩。
5.2预期达到的目标
(1)通过学习了解热泵的原理和在电厂中的应用;
(2)研究热泵系统各部件换热,对其进行热负荷计算并完成经济性分析;
(3)发表2-3篇较高水平论文;
(4)顺利完成硕士研究生论文。
六、参考文献
[1] 王振铭.热电联厂分布式能源与能源节约[J]. 节能,2005,(5):4-9
[2] 顾鑫,鹿娜,邵雁鹏.浅析火力发电厂节能减排的现实意义及措施[J].科技天地,2008,(15):178
[3] 李增平.31-25-1型汽轮机组循环水供热改造[J].四川电力技术,2006,(1):31-32
[4] F Moser,H Schnitzer.Heat pumps in industry[M].Amsterdam Qxford:Elsevier,1985
[5] 刘颖超.基于循环经济理念的电厂余热利用空调系统研究[D].保定:华北电力大学,2008
[6] 刘剑涛,马晓程,尤坤坤等.火电厂循环水余热利用方式的研究[J].节能,2012,(9):49-52
[7] 季杰,刘可亮,裴刚等.以电厂循环水为热源利用热泵区域供热的可行性分析[J].暖通空调,2005,35(2):104-107
[8] 赵斌,杨玉华,钟晓晖,邬志红.循环水吸收式热泵供热联产机组性能分析[J].汽轮机技术,2013,55(6):454-457
[9] 张理论,赵金辉,张力隽.电厂冷凝水余热回收系统设计与应用[J].节能,2013,(3):38-41
[10] 李荣生.浅析吸收式热泵技术[J].应用能源技术,2007,117(9):40-42
[11] Goldstick RT.余热回收手册[M].谢帮新等译.长沙:中南工业大学出版社,1986,12-13
[12] Y,Schaefer L,Hartkopf V.Energy and exerrgy analysis of double effect(parallel andseriesflow)absorptionchillersystems[C]//10th IEA Heat Pump Conference.Japan,2011
[13] Talbi. Exergy analysis: an absorption refrigerator using lithiumbromide and wateras the working fluids[J].Applied Thermal Engineering.2000,619-630
[14] 王以清.溴化锂吸收式热泵的研究及应用[J].能源技术.2000,(3):177-179
[15] van der Pal M,de Boer R,Wemmers A,et al.Experimental results and model calculation of ahybrid adsorption-compression heat pump based on a roots compressor and silica gel-water sorption[C]//10th IEA Heat Pump Conference.Japan,2011
[16] Miyazaki T
,Tani Y,Ueda Y,et al.The experimental investigation of the dual evaporator type adsorption chiller[C]//10th IEA Heat Pump Conference.Japan,2011[17] 张学镭,陈海平.回收循环水余热的热泵供热系统热力性能分析[J].中国电机工程学报,2013,33(8):1-8
[18] 肖永勤,韩世功,刘明军.溴化锂吸收式热泵在集中供热系统中的应用级节能性分析[J].制冷与空调,2012,12(4):8-12
[19] 周振起,马玉杰等.吸收式热泵回收电厂余热预热凝结水的可行性研究[J].流体机械,2010,38(12),73-76
[20] 周崇波,俞聪,郭栋等.大型吸收式热泵应用于火电厂回收余热供热的试验研究[J].现代电力,2013,30(2):37-40
[21] 郭江龙,常澍平,冯爱华,李浩等.压缩式和吸收式热泵回收电厂循环水冷凝热经济性分析[J].汽轮机技术,2012,54(5):379-380,388
[22] 吕太,刘玲玲.热泵技术回收电厂冷凝热供热方案研究[J].东北电力大学学报,2011,31(1):6-10
[23] 吴星,付 林,胡 鹏.电厂循环水供热技术的研究与应用[J].区域供热,2008,(4):4-7,32
[24] 孙志新,戴义平,王江峰等.电厂循环水水源热泵供热系统可行性分析[J].暖通空调HV&AC,2011,41(3):133-136
[25] 王宝玉,周崇波.热泵技术回收火电厂循环水余热的研究[J].现代电力,2011,28(4):73-77
[26] 严俊杰,李勤道,刘继平等.热网加热器运行经济性的定量诊断方法[J].汽轮机技术,2000,42(6):327-330,364
[27] 王鸿,郑文华,王江川.大同二电厂探索大型热电联产供热新模式[N].经济日报,2011-06-24
[28] 金树梅.吸收式热泵供热系统的应用及经济性分析[J].煤气与热力,2010,30(1):4-6
[29] 叶学民,童家麟,吴杰等.超临界660WM机组废热利用经济性分析[J].2013,42(4):15-16
[30] 刘振宇.浅析燃煤电厂乏汽余热回收供热的技术路线[J].2013,(6):44-45